Cryptococcosis in HIV – Infected Hospitalized Patients in Latvia

Sangirejeva Anastasija¹,²*, Azina Inga¹,² and Rozentale Baiba¹,²

¹Riga Eastern Clinical University Hospital, Latvian Center of Infectology (LCI), Linezera Street 3, Riga, Latvia.
²Riga Stradiņš University, Dzirciema Street 16, Riga, Latvia.

ABSTRACT

Aims: To determine the prevalence of cryptococcal infection among HIV hospitalized patients, to evaluate clinical characteristics and outcomes in Latvia. **Study Design:** Cross-sectional study. **Place and Duration of Study:** Riga Eastern Clinical University Hospital, Latvian Center of Infectology, between January 2014 and February 2017. **Methodology:** We conducted the study reporting demographics, epidemiological (age, sex, clinical aspects, paraclinical results (cryptococcal antigen in cerebrospinal fluid, serum, urine, cryptococcal DNA, HIV RNA and lymphocyte T CD4+ count), treatment and outcome aspects. We analyze 69 patients (71% men, 29% women) with HIV infection and cryptococcosis. **Results:** 69 cases of cryptococcosis were confirmed for 699 HIV infected hospitalized patients tested, giving a prevalence of 9.9%. 38% (n=26/69) of patients were with clinical signs of infection with the central nervous system involvement, 19% (13/69) patients had pulmonary involvement.

Corresponding author: E-mail: anastasijashang@inbox.lv;
Other 43% (n=30/69) of patients had disseminated non-CNS disease (elevated serum cryptococcal Ag or DNA). Most patients had advanced HIV disease (Median lymphocyte T CD4+ count=48, 5 cells/μL, (1-1041), the average was 112, 9 cells/ μL (SD 184.98). 87% (n=59/68) of patients had lymphocyte T CD4+cell count < 200 cells/μL Only 25% (n=14) of the patients known to have HIV infection (n=56/69) were receiving antiretroviral therapy at the time of presentation. Overall mortality rate was 59% (n=41/69).

Conclusion: Prevalence of cryptococcal antigenemia was 9.9%, indicating that the prevalence of cryptococcal infection among HIV patients in Latvia may be high enough to consider targeted screening. HIV positive patients have high mortality (35%) following cryptococcal infection which persists beyond their initial hospitalization. Follow-up studies of late mortality would be beneficial.

Keywords: Cryptococcal infection; cryptoccocal antigenemia; invasive fungal infection; HIV; AIDS.

1. INTRODUCTION

Cryptococcus neoformans infection is a systemic invasive fungal infection (IFI) and is seldom among people who have healthy immune system. However, C. neoformans is a major cause of illness in people living with Human Immunodeficiency Virus (HIV), with an estimated 220,000 cases of cryptococcal meningitis occurring among people with HIV worldwide each year, resulting in nearly 181,000 deaths [1,2]. Before antiretroviral therapy (ART) was discovered, fungal and other opportunistic infections were an common problem for people with advanced HIV/AIDS. Since then, the numbers of fungal infections and deaths due to fungal infections in people with advanced HIV/AIDS have decreased significantly in the developed countries [3,4]. Although the widespread availability of ART in developed countries has helped improve the immune system of many HIV patients so that they don’t become vulnerable to infection with Cryptococcus. Cryptococcal meningitis is still a great problem in resource-limited countries where HIV prevalence is high and access to healthcare is limited. Most cryptococcal meningitis cases occur in sub-Saharan Africa (estimated in 2014 in sub-Saharan Africa 162,500 cases, 43,200 cases in Asia and Pacific, 9,700 cases in North/South America and Carribbean, 3,300 cases in North Africa and Middle East) [5]. However, fungal diseases, especially cryptococcosis, are still a concern for people living with HIV in Europe, for instance, in 2014 4,400 cases were estimated [5] despite the widespread availability in Europe of ART.

Mainstay therapy includes an induction phase with amphotericin B (Amb), either the lipid or deoxycholate formulation, combined with flucytosine (5-FC), followed by the consolidation and subsequent maintenance phases, where higher and lower doses of fluconazole are used. Lipid soluble formulations of Amb are preferred over deoxycholate Amb due to their better tolerability and lower nephrotoxicity. However, cost and availability of lipid formulations of Amb and 5-FC are major limitations in resource-limited settings [6].

Screening of cryptoccocal antigenemia in HIV-patients at risk allows early identification of asymptomatic cases. Cryptoccocal antigenemia in the absence of meningitis can represent early-stage cryptococcosis during which antifungal treatment might improve outcomes. However, patients without meningitis are seldom tested for cryptococcal infection [7].

1.1 Objective

A prospective analysis of patients with HIV and cryptoccocal infection was conducted to evaluate clinical characteristics and outcomes in Latvia. Until today, there was no research in Latvia about prevalence of cryptoccocal infection and associated factors, characteristics of infection among HIV adults hospitalized patients.

2. MATERIALS AND METHODS

2.1 Study Population

We conducted a cross-sectional study of hospitalized patients older than 18 years with HIV infection (previous diagnosis or confirmed at hospital during the study) and cryptoccocosis of a 3-year period (from January 1, 2014 to February 1, 2017) at Riga Eastern Clinical University Hospital, Latvian Center of Infectology (LCI) located in the capital city of Latvia - Riga.
An anonymity number was given to each patient to preserve the confidentiality. Personal data from participant and all diagnostic results was kept strictly confidential.

Invasive fungal infections (IFIs) were classified according to the European Organisation for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria [8]. The diagnosis of cryptococcosis was made according to EORTC/MSG criteria; additionally, we used EQUAL Cryptococcus Score 2018: A European Confederation of Medical Mycology Score Derived from Current Guidelines to Measure QUALity of Clinical Cryptococcosis Management [6].

2.2 Data Collection

During the study period, for all patients infected by HIV (previous diagnosis or confirmed at hospital during the study), who were admitted in the hospital, a CrAG test in serum and urine and DNA assay in serum was performed. Further analysis was performed for HIV infected patients with diagnosed cryptococcosis.

A lumbar puncture (LP) was performed in individuals who had CNS symptoms (headache, neck stiffness, confusion, ataxia, vomiting, photophobia), and if the patient had focal neurological symptoms. Patients with pulmonary involvement (infiltrates or nodule on imaging, respiratory symptoms) underwent diagnostic bronchoscopy.

Data included demographics, epidemiological (age, sex, clinical aspects, paraclinical results (cryptococcal antigen (CrAG) in cerebrospinal fluid (CSF), serum, urine, cryptococcal DNA in serum and CSF, HIV RNA and Lymphocytes T CD4+ (LT CD4+) count), treatment aspects were collected from the patient folders and Latvian Center of Infectology (LCI) hospital HIV database.

Death date was obtained from the LCI hospital HIV database and country system’s Medical Informatics database and Population Register.

The mycological diagnosis of cryptococcosis was done in the Eastern Clinical University Hospital, LCI reference laboratory. CrAG was detected using a latex agglutination test (PASTOREXTM CRYPTO PLUS) following the Bio-Rad (France) manufacturer's instructions. CSF and urine was examined for research of antigen with the same technique. Cryptococcus DNA was detected with polymerase chain reaction.

2.3 Statistical Analysis

Statistical analysis was performed using SPSS.16 (California, USA, 2007) [9]. Means, medians and frequencies (%) were used to describe patients' characteristics.

2.4 Country’s Profile

According to the Latvian Central Statistical Administration data in 2018, the Latvia total population was estimated to be 1 million 934 thousands, with 54% females. Of the general population, 15.8% were younger than 15 years and 20.1% were above 65 years of age [10]. According to the Centre for Disease Prevention and Control of Latvia report, in 2018, Latvia had 326 new HIV infections including 89 AIDS-related deaths. There were 7669 people living with HIV on January 1, 2019, including 2036 in AIDS stage and 1121 AIDS-related death. An estimated number of children infected with HIV were 80 due to mother-to-child transmission in January 2019, and 5 in 2018 [11]. Also in 2017 Latvia reported the highest number (371) of new HIV cases in the EU and European Economic Area (EEA). The HIV/AIDS Surveillance Report of the World Health Organization and the European Center for Disease Prevention and Control (ECDC) about the situation in Europe 2018 (2017 data) suggests that last year there were 18.8 new HIV cases per 100,000 residents in Latvia, which is higher than average of 6.2 cases in other countries [12,13].

3. RESULTS

3.1 Patient Characteristics

During the study period, a total of 699 patients infected by HIV were admitted in the hospital. A CrAG test in serum and urine and DNA assay in serum was performed for all patients. Of these 69 hospitalized HIV positive adult patients were diagnosed positive Cryptococcus Ag or DNA, meaning a prevalence of 9.9%. Further analysis was performed for this group (69 HIV infected patients with cryptococcosis). The mean follow-up was 24.6 months (SD 24, 63; Median 16, 5 (0-62).

The different characteristics of our study population and groups of patients depending on the result of antigenemia are described (Table 1).
Table 1. Characteristics of hospitalized HIV patients screened for cryptoccocal antigen and DNA in Riga, Latvia

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cryptococcal ag positive total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49 (71)</td>
</tr>
<tr>
<td>Female</td>
<td>20 (29)</td>
</tr>
<tr>
<td>Job: n (%)</td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td>16 (23, 19)</td>
</tr>
<tr>
<td>Disability</td>
<td>2 (2, 90)</td>
</tr>
<tr>
<td>Not working</td>
<td>50 (72, 46)</td>
</tr>
<tr>
<td>Prisoner</td>
<td>1 (1, 45)</td>
</tr>
<tr>
<td>Mean age: (SD)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>23</td>
</tr>
<tr>
<td>Max</td>
<td>57</td>
</tr>
<tr>
<td>Age groups: n (%)</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>11 (16)</td>
</tr>
<tr>
<td>31-45</td>
<td>44 (64)</td>
</tr>
<tr>
<td>>45</td>
<td>14 (20)</td>
</tr>
<tr>
<td>HIV serotype: n (%)</td>
<td></td>
</tr>
<tr>
<td>HIV -1</td>
<td>69 (100)</td>
</tr>
<tr>
<td>HIV 2</td>
<td>00</td>
</tr>
<tr>
<td>LT CD4+ (cells/mm³): n (%)</td>
<td></td>
</tr>
<tr>
<td>0-199</td>
<td>59 (87)</td>
</tr>
<tr>
<td>200-499</td>
<td>6 (9)</td>
</tr>
<tr>
<td>>500</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1</td>
</tr>
<tr>
<td>Mean HIV RN5: (cop/ml) (SD)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>671520, 7 (1682950)</td>
</tr>
<tr>
<td>Min</td>
<td>55950</td>
</tr>
<tr>
<td>Max</td>
<td>9800000</td>
</tr>
<tr>
<td>Antiretroviral therapy: n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14 (20)</td>
</tr>
<tr>
<td>No</td>
<td>43 (62)</td>
</tr>
<tr>
<td>Discontinued due to the lack of adherence</td>
<td>12 (18)</td>
</tr>
</tbody>
</table>

3.1.1 Epidemiological aspects

Of the 69 HIV-seropositive patients who were included in this study, the majority were male (n=49/69, 71%). The predominance of adult patients was noted in our study population. The average age was 38, 2 years and patients ranged from 23 to 57 years. There were 57/69 patients with information on a possible HIV transmission route. 72% (n=41/57) were intravenous drug users.

3.1.2 Clinical aspects

More patients (81%) were known to have HIV infection at the time of their presentation, average 6, 2 years (SD 4, 98; min – less than one year; max – 16 years). The remaining 19% (n=13/69) of patients had HIV infection diagnosed during this hospitalization. 59% (n=41/69) of patients had viral virus hepatitis as a co-existent disease. 40/41 of patients were hepatitis C virus co-infected, 1/41 - was hepatitis B virus co-infected. Fig. 1 have shown details the distribution of the clinical forms of cryptoccocosis in our patients. 38% (n=26/69) of patients were with clinical signs of infection with the central nervous system (CNS) involvement, and 4 of them were CrAG in serum negative. 19% (n=13/69) patients have pulmonary involvement. Only two of them were CrAG in serum positive, others were CrAG in serum negative (respectively had localized pulmonary disease). Other 43% (n=30/69) of patients had disseminated non-CNS disease (elevated serum CrAG or DNA). The prevalence of neumonengical signs was 22% (n=15/69). They predominated in patients with positive cryptoccocal antigenemia. 13% (n=9/69) of patients had concurrent final diagnoses. Final diagnoses included Pneumocystis jirovecii pneumonia (n=7/9) and Pneumocystis jirovecii colonization (n=2/9). 54% (n=37/68) patients with
medical charts available did not have evidence of any OI. Other 46% of patients (n=31/68) had past OI, half of them (n=15/31) had tuberculosis (TBC). 20% (n=14/69) of patients had a prior hospitalization coded for cryptococcal disease.

3.1.3 Paraclinical aspects

HIV-1, the predominant serotype, was found in all of cases. In none of samples Cryptococcus neoformans was detected by fungal culture. CrAG screening in serum was performed in all 69 patients. In 32% (n=22/69) of cases CrAG was negative, including 4 patients with CNS involvement and CrAG positive in CSF, 11 patients with pulmonary disease, and 7 patients with positive Cryptococcus DNA in serum. A lumbar puncture (LP) was performed in individuals who had CNS symptoms (headache, neck stiffness, confusion, ataxia, vomiting, photophobia), and if the patient had focal neurological symptoms. LP was performed in 46% (n=32/69) of patients. CrAG or DNA screening in the CSF was positive in 26 cases. 90% CSF characterised with lymphocytic pleocytosis with the average 60, 5 cells/μL (SD
99, 58; Median 19, 5 (2-373). Patients with pulmonary involvement (infiltrates or nodule on imaging, respiratory symptoms) underwent diagnostic bronchoscopy (n=18/69). In 13 patients’ bronchoalveolar lavage fluid (BAL) samples were positive CrAG. CrAG screening in urine was performed in all 69 patients. 7% (n=5/69) of patients had positive CrAG in urine. LT CD4 count was available for 68/69 participants. Fig. 2-4. have shown CD4 count and Plasma HIV RNA levels and their relationships in our patients. Most patients had advanced HIV disease (Median LT CD4+ count=48, 5 cells/μL, (1-1041). The average LT CD4+ was 112, 9 cells/ μL (SD 184.98) 87% (n=59/68) of patients had CD4+ cell count < 200 cells/μL. Mean Log viral load was 5.

Fig. 3. Levels of plasma HIV RNA among HIV infected hospitalized patients with cryptococcosis in Latvia from 2014 to 2017 (n=69)

Data are: HIV RNA (log10 copies/mkL)

Fig. 4. Relationships between levels of CD4 count and Plasma HIV RNA among HIV infected hospitalized patients with cryptococcosis in Latvia from 2014 to 2017 (n=69)

Data are: CD4 count (cells/mkL); HIV RNA (log10 copies/mkL)
3.2 Therapeutic and Outcome Aspects

Fig. 5 have shown antiretroviral therapy distribution in our patients. Despite that most patients had advanced HIV disease, only 25% (n=14) of the patients known to have HIV infection (n=56/69) were receiving antiretroviral therapy at the time of presentation. Antifungal therapy of cryptococcosis with Fluconazole (800mg/day per os or intravenous) was administered to all 69 cases during hospitalization. And 22% (n=15/69) received combination therapy with Lipid soluble formulations of Amb due to severe illness. 20% (n=14/69) of patients in addition received corticosteroids.

Overall mortality rate was 59% (n=41/69). 37% died within 90 days of cryptococcal diagnosis (early mortality), and 63% died after 90 days (late mortality). In hospital mortality rate was 25% (n=17/69), with mean days at hospital – 16, 1 days (SD 8, 72). 41% (n=7/17) died in Intensive Care Unit. After hospitalization mortality rate was 35% (n=24/69). Fig. 6 have shown outcomes in our patients.
In 88% (n=15/17) patients who died in hospital, the cause of death was IFI – cryptococcosis. In 12% (n=2/17) the cause of death was other reasons (1- renal insufficiency glomerulonephritis due, 1- hepatic insufficiency). The cause of death after hospitalization was IFI (including cryptococcosis) in 21% (n=5/24) of cases. In 46% (n=11/24) of cases the cause of death were other reasons, from them 4 cases – TBC,3-hepatic insufficiency,2 – bacterial meningoencefalitis, 2 – lymphoma. And in the remaining 33% (n=8/24) the cause of death was unknown.

4. DISCUSSION

Advanced HIV disease remains an essential challenge. Despite major progress over the last decade in expanding access to ART and reducing HIV-related deaths, up to half of people living with HIV present to care with advanced disease, and many continue to die from HIV-related opportunistic infections. We need to find better ways to identify and manage advanced HIV disease, in order to reach the global goal to reduce HIV deaths by 50% by 2020. Cryptococcal meningitis is a serious opportunistic infection and a major cause of morbidity and mortality among HIV positive people with advanced disease. Most people dying of cryptococcal meningitis live in low-income countries. Often people are not diagnosed early enough because rapid diagnostic tests and lumbar puncture, in the diagnosis of cryptococcosis, are unavailable. The first-line antifungal drugs that are used for treatment are costly and often not available to save the lives of people infected with cryptococcal meningitis. In Europe important death factors are antifungal drug toxicity, intracranial pressure and immune raised reconstitution inflammatory syndrome [14].

In this study we report a prevalence rate 9.9% of cryptococcosis among hospitalized patients with advanced HIV infection. Other published research data, shows a different situation to Latvia in other European countries. For instance, in Germany Cryptococcal antigenaemia was found in 1.6% of patients with LT CD4 <100 cells/uL [15]. The data about the burden of cryptococcal disease in the Baltic States is scarce.

According to the Centre for Disease Prevention and Control of Latvia report, in 2018, Latvia had 326 new HIV infections, including 99 AIDS stage and 89 AIDS-related deaths [10]. According to these findings, one quarter of individuals were recently diagnosed at such advanced stage. Late HIV diagnosis remains a problem in Latvia. This could be one of the reasons why the opportunistic disease is more common. In our study 19% of patients had HIV infection diagnosed during the hospitalization with an existing opportunistic AIDS disease – cryptococcosis.

Although access to HIV diagnosis, and immediate start to ART (regardless of the stage or LT CD4 counts) constitutes a major medical advancement in the clinical management of HIV in Latvia, its success depends on strict adherence to prescribed regimen. 18% of our patients with cryptococcosis were on ART, with poor adherence to medical treatment.

In our study in 43% of cases of occult cryptococcal antigenemia is seen among hospitalized HIV-seropositive patients. Health care providers should evaluate HIV-infected patients for cryptococcal antigenemia, even in the absence of meningitis. Based on World Health Organization and European AIDS clinical society guidelines, it is recommended to screen all HIV-infected people with LT CD4 <100 cells/uL for CrAg, and based on World Health Organization guidelines it may be considered at a higher LT CD4 cell count threshold of <200 cells/uL [16,17]. Routine screening might identify asymptomatic meningitis, too. Symptom-based diagnosis is not a reliable predictor of the central nervous system involvement [18].

5. CONCLUSION

Cryptococcal disease often has an insidious presentation and can be difficult to recognize. However, delayed diagnosis can lead to increased morbidity and mortality. In our study the prevalence of cryptococcal antigenemia was 9.9%, indicating that the prevalence of cryptococcal infection among HIV patients in Latvia may be high enough to consider targeted screening.

HIV+ patients have high mortality (35%) following cryptococcal infection which persists beyond their initial hospitalization. Identifying patients at higher risk for mortality is critical for successful treatment and outcomes. Follow-up studies of late mortality would be beneficial.

Our research data again highlights that there is a need for a broader body of society, educating the
public to discover HIV infection more quickly and reduce the number of patients at high risk of opportunistic infection (OI) developing; already known HIV positive patients should improve their adherence. This will improve the health and survival of a particular individual and reduce the public’s financial costs of OI treating.

CONSENT

All authors declare that written informed consent was obtained from the patient (or other approved parties) for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editorial office/Chief Editor/Editorial Board members of this journal.

ETHICAL APPROVAL

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2019 Anastasija et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/50189